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*';7 This paper studies how to identify hidden factors in multivariate time
series process. It is shown that the number of factors must be equal to the
rank of both the covariance matrices and the parameter matrices of the
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transformation is derived which can recover such factors.
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SIGNIFICANCE AND EXPLANATION

A central problem in the study of multivariate data is the reduction of

dimensionality. This problem is specially acute in modeling multiple time

series because if the number of series is large, a huge number of parameters
may be needed to obtain an adequate representation of the behavior of the
process. This paper explores ways to reduce the dimensionality of the
observed process through the extension of the static factor analysis model to
the dynamic context. It is shown how the number of factors can be identified,
how the loading matrix can be estimated and how a canonical transformation can

be built to recover the factors and to obtain a simpler representation of the

process. The usefulness of this t y is illustrated with several examples.
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A FACTOR ANALYSIS FOR TIME SERIES

Daniel Pena® and George E. P. Box

INTRODUCTION

A central problem in the study of multivariate observations is the reduction of
dimensionality. 1In the time domain study of vectors of time series, Quenoulli (1957)

suggested how to use the eigenvectors of the parameter matrices of an autoregressive

- proceas to obtain a simpler interpretation and the system, Box and Tiao (1977) showed how

to build a canonical transformation of an autoregressive vector process which order the
components from least to most predictable, and Reinsel (1983) presented how to eatimate
index variables to simplify the representation of a vector autoreqressive time series using
a formulation previously suggested by Sargent and Sims (1977).

Brillinger (1981) extended the standard principal component approach to the frequency
domain. Related work is due to Priestley (1981) and Subba Rao (1975). Geweke (1977) and
Geweke and Singleton (1981) discussed a frequency domain version of factor analysis.
Finally, Hannan (1981) has presented methods to estimate the dimension of a linear system.

In this paper a factor analysis of time series in the time domain is proposed. It is
assumed that an observed k-vector of time series 2, could be written as

z, = By, * € (1.1)
wvhere P is a k x r matrix of unknown parameters, xt is an unobservable r-dimension
vector process and Et is a k-dimensional white noise sequence with full rank covariance
matrix E‘. This model is of course only relevant either if r < k or if r = k but

te = 0., In the first case a reduction of dimensionality could be achieved without loss of

information. In the second case, r = k, an interesting problem is to find out a linear

transformation of the series that allows a simpler representation of the system.

*gStatistics Department, ETSII, Universidad Polit8cnica de Madrid, sSpain.

sponsored by the United States Army under Contract Ko. DAAG29-80-C-0041. The first author
acknowledges support from the United States-Spanish Joint Committee for Educational and
Cultural Affairs.
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In Section 2 the general model (1.1) is analyszed and some of its properties are
studied. A canonical transformation can then be introduced to recover the factors. 1In
Section 3 the one factor model is studied in detail, aad in Section 4 a practical
methodology to apply these procedures is developed. Section 5 includes several examples of
the application of the suggested models, and in Section 6 this methodology is compared with

related approaches in the time domain. PFinally, Section 7 contains some concluding

remarks.
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2. THE GENERAL UNCOUPLE FACTORS MODEL

* 2.1 TFormulation

let L, Dbe a vector of k time series and z, = L, - 4, the vector of deviations
from some origin L that will be the mean if the series are stationary. We assume that
these series are generated by r(r < k) factors, y,, plus a measurement error €, a8

v = ut + Ee (201)

where P 1s a k x r matrix of parameters of rank r and €. is a white noise sequence

o
re )

L ata
v evara

- with full rank covariance matrix E‘ The vector £ follows a r-dimensional ARMA
(py,qy) process of the form:
j,y(l)xt - Q,Y(n)gt (2.2)
where
§, (8 =L -¢g (1B~ ... - gymn’
8B = -8 (N~ ... - 8, (st
are matrix polynomials in the backshift operator B, the ¢'s and the §‘'s are rxr
matrices and the roots of the determinantal polynomial !gy(n)l are on or outside the unit
circle, vhereas those of |2y(!)| are all outside the unit circle. Also, {a} is a
sequence of vector Gaussian white noise with zero mean and covariance matrix E‘. We shall
assume in this section that the r factors are independent, and all the ¢ and §
matrices will be diagonal. However, we will allow contemporaneous dependency in the noise
matrix I a and assume only that is positive definite. In Section 4 this model will be
generalized to the case in which the factors have dynamic dependence and the parameter
matrices ‘Y and gy are no longer diagonal.
The matrix P will be called the factor loadings or factor weights matrix, and its
elements, Piye represent the weight of the factor 3 in the observed ith component. It
¢ is any r % r nonsingular matrix, the generating equation could also bes written
BB YK
:.:) where pP* = 5’1 is the new rectangular matrix of coefficients and z; - g!t is a linear
;:2 ) transformation of the factors. Multiplying (2.2) by &
o
5
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and so, the model for the new set of factors is again an r-dimensional ARMA (py.qy) model

WIEE W E Y
s

NN

with parameters

g*(8) = cy(mig”"

o

8+(n) = CB(RIC™

b
L-
b

I* = cL C'
=a

- .-a-
n In general, the restriction that the ¢ and @ parameter matrices of the components are
diagonal imposes a uniqueness condition. However, if ¢(B) = 1 - 1B and 8(B) = J, that

T is, the factors follow and nonstationary AR(1) with all the roots in the unit circle,

some indeterminacy appears, because whatever the { matrix the new factor will be

uncorrelated at all lags. A possibility is to choose C to diagonalize P'P and L at

the same time. In this way, not only the factors are uncorrelated to all lags and

contemporaneously, but also the columns that transmit their effect to the observed series

are orthogonal.

However, if C is diagonal, that is can be interpreted as a change of scale, the

transformed parameter matrices, ¢*(B) and §*(B) are always diagonal and ;: keeps its .

basic features. To remove this source of indeterminacy we assume that the columns of the

P matrix of factor loadings are such that

The objective of the analysis will be to estimate these factor loadings and to build a

canonical transformation to recuperate the hidden factors.

2.2 The Covariance and Correlation Matrices of the Observed Process

Let us call T (k) = Elg,_,z.] the covariance matrices of the process g, and ny(k)

the covariance matrices for the generating vector P A Then:

[,(0) = BL(O)R' + £, (2.3)

-4-
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. and the rank of l"(k) for k > 1 will be equal to the number r of common factors.
Also, if the factors are independent for all lags, and the matrix [- is diagonal, then '.u
B )
LY
. all the covariance matrices gy(k) vill be diagonal and, hence: (1) the matrices [ (k) :;Mi‘
BN
i will be symmetric for k ? 1, (2) the columns of P will be eigenvectors of ;z(k) with }Sg‘.
- eigenvalues Yi‘k)' wvhere Yi“‘) are the diagonal elements of ;y(k).
~ t‘._".
Ny The partial autocorrelation matrices will be given by (see Tiao and Box (1981)) é:-.':':.'
N 'oor R
% L 0LMm b= e
-1 -1
l P (L) = [I;'(O) = B LA (D)B(M)]
“ -1 poad]
< (L(2) =B (A (L) _(2)] £>1 finy
._; =g [ - f:"ﬁ"
v where fosh
Ly ’..:_c;‘
DALY
i B = (L = DI = 2) e L1 \

g'CL) = [LHNIN2) wue DML = 1))

n [O) L) o ['te-2) ]
P ALy = | L0 I(0)

5 .

N [(2~2) L)

&

.

and so, the partial autocorrelation matrices can be written

-,

g:, 2=-1 2-1 -1

. z'(l) = B(2) [al(l) - ), ). z;(l - 4)A (1:jpl";'(j)]
b i=1 =1

c,

o

vhere B(1) = (L (0) = (11" (B! ana 27N(1,3,8) is the (1,3) element of

2"'(0). Then e
R

P )

P ) 121 li1 - d‘:-'.::

Pr(a) = B(LIRIL () - L'(2 = DB'A (1,3,2)R (3))P* (2.5) N

Y g Y : - o,

SRRSO AR
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e Wow, if we call Vv the null space of P defined by all the vectors that verify p'v =0, :{»‘.
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and if V is a k x (k - r) matrix which columns are a basis for this space v, then
Paywe=pgpyg=o
this shows that (1) the rank of g'(t) is at most r, and (2} the eigenvectors linked to
zero eigenvalues of Z'(l) belong to the v space. .
As an example, and for further reference, we derive the first partial autocorrelation

matrix assuming that the factors follow an AR(1) process with parameter matrix ‘y'

= ' -1 - [ 4 [ -1
Py = LI T(0) = BLS(1)R(RL (0)B" + E )

and using the relations

1,,~1 -1

-1 -1
1 p)

! (I, + B (y)B) =% - L B(L+T[ (0)B

L(OR'E,

and
f s, - reonr- o)
=y =y
and calling A = g'g;'g, we obtain

-1 -1
- - A + ’
| P(1) = B& L (OVIL - AL + [ (n) 'L (0)1p’E

now, using the relations (Handerson and Searle (1981))

' g+plmr-paen - qepTe
1+ E-pg @ '
, we obtain
: P(1) = Pg T (0)(I + AT “lpegtt .
. P(1) = g I (0)(L + AL (0))7'R'EC (2.6)

The matrix sz(O) can be considered as a measure of the ratio between the signal
introduced by the factors in the observed series and the noise due to Et' For instance,
in the one factor cage, assuming Ee = og;, then

2
Zpiv (0)

Al (0) =
==y

[+
€

where p; are the components of the vector P and Yy(O) the variance of the factor.
The above expression shows that ggy(O) compares the variance of every component of z,

due to the factor, pfvy(O), with the variance introduced by the error, az.
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In the general cass, if this matrix is much greater than [ (that is, the signal-

noise ratio is larger than one) then

(5 + AL O ""AL (0 = g
and if we multiply (2.6) by P
Peop = gL (003 + AL 007"y = B,
and so, approximately, P1) has eigenvalues equal to the diagonal elements of ‘y with

corresponding eigenvectors the columns of P.

2.3__The Model for the Observed Process and Its Ferameters

The properties we have studied for the covariance and correlation matrices impose
strong restriction on the type of model the observed 5, vector of series can follow,and
to the characteristics of its parameter values.
Theorem 1. Suppose g, = Ry, + &, where y, is a r-~dimensional ARMA (py.q,) process,

P isa kxr matrix (k >r) of rank r and [ is a k-dimensional white noise

sequence with covariance matrix [‘. Then, $ follow a k~dimensional ARMA (p,.q,)
with p, = Pyr 9z * ux(py,qy)-
Proof.

The covariance matrices of an ARMA (p,q) model satisfy the equation (see Tiao and

Box (1981));:

1-1 ]
) g-z-. L (gt = 9) - ).o 2, (NEE5(3 + 1) £ =0,...,m
L, =
“x,u-m,u-ﬂ > m

where = = max(p,,q,), the ¥'s are obtained from the relationship §(B) = g"mg(n).
and go = -I. It is assumed that (a) if p<q, A(p+ 1) = .cc = g(m) ~ 0, and (b) if

q<p, g(q + 1) = 9_(-) = (0., Premultiplying the system 5! equations by p and

postaultiplying by P':
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( j:i, RL,(3)gy(2 = @' - jzo BE, (18, (IR + ke L=0
L~1 n=-% .
L (%) =4 &m RL, (g (2 - 1" - jzo B, (1)E,85(3 + 0B L =1,..m (2.7)
a
‘ 3-):1 BL (% = Dgp(t - 30p! L>m

For £ > m, equating the precedent result to the general expression for the

covariances of an ARMA model

n pl
3}1 BL, (L - gy(2 - ' = %1 Lt - Dgie -9 t=m+ 1.,

and so, using (2.4), py = Py and:

8, (KIR’ = B'g (k) k> 1 (2.8)
and substituting (2.8) into (2.7)
-y m
A ™ . ) .
UL Ll jéo MER R MED L 2=0 (2.9) .
2-1 ﬂfl
Do) =4 ) L = 30 = E43(8) = ) PR (NLB0(3 + MR’ £ = V,eeem (2,10
j=t-n =0
b
L ﬁ‘ L (2= Dgs -9 t>m (2.11)

If the order of the AR component of b A py, is zero, then there will be exactly

qye ;z(l) covariance matrices different from zero, and the ohserved process 2, will

follow an MA (qy) process. On the other hand, if qy = 0, the system of equations

reduce to

T
L

x

.

o_"
v’ l:'

Y I'.I..I..d'
PR X XS

S Aok A 8c

"y 9 2-13
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-1
[,00) = ) L(gi(=3) + § + Bl B’

2-1 '

Loy = ) Lgiee-3)=Lg () L=1...P
j=L=m
o

[ (8 = 321 Lt - Ngie -9 L>®

and writing

m
B * BEE' - j}o 'IED MMED

m=4
L gL(2) = jéo P, (NERI(3+ 41 L= TP

usg
the process will follow an ARMA (P,P) model. 1In the general case, if Py > Qy+

B = py, the first py covariance matrices will be given by (2.9) and (2.10) and so they
will not follow the AR pattern and an MA(p) component will ba needed in addition to

the AR(p) 1linked to the pattern of (2.12). So, the required model will be ARMA (p,p).

On the other hand, if Ay > py the first dy matrices will follow the nonsystematic

2"y

structure and the process will be ARMA (py,qy).

a*a

i s s 8

The representation obtained for 2z, is not unique, as shown in the following:

Thecrem 2. If gz, 1is an cbserved vector time series generated by r common factors as in

(2.1) and which follows model (2.2), then g could be equally represented as

t
g'(n)gt - g'(s)gt with new parameters 2; - 21 + A, Qi - 22 + A, where p is a nonnull

matrix of rank = k - r.

Proof.

let m = max(p,q), then, aasuming O8(q + 1) = ... = 6(m) =0 if m > q and

Mp+1) = 0. =¢(m) =0 if m> p:

m
8%(B) = (L - (8, + A)B = ... = (8 + R)B) = §(B) + AL (B)
$*(B) = ¢(B) + AL (B)

and the condition for the matrices 6+*(B) and ¢*(B) to be equally acceptable as

-9~

I B
.

o o
S I
f-!'&f‘.*n." >




PAOYA AL AL NGO Dl R N AR, 200 X ar S e

(3tar]

()
PP

. parameter matrices of the process is

gz, + pL (B2, = 8(Blz, + BI (Bla,

and so, the condition is

z, = da, (2.13)

and there must be k -~ r linear combination of the series that are random noise. Suppose

U
PR
1'a

that

T, =Y, *t €,

if we multiply for any matrix V' such that Y'P = 0, then by Sylvester's law of nullity

REAMEAEE)
LI .

rank(V) € k - r, and:
. g'gt - !'gt (2.14)
now we prove that any matrix V' that verifies (2.14) must verify (2.13), as
-1
z, = $(B) g(B)ut - *(B)'t
€, = $(Bla, - By,
and if Y'P =0

- Ve
B -

- e = V'yBa,

and, as g'gt must be a white noise sequence,

’ -y
- 4 Et 14 gt (2.14)
‘; ' =
y v, =0 Vi (2.15)

2

and so, if we take A = V' the proof is complete. Note that there always exist a matrix

0
*e ™

V' such that V'E = 0. We can take, for example, as first k - r rows of y' a set of
the k - r lineary independent eigenvectors of PP' that are linked to zero eigenvalues,

and put in the leftover r positions any r vectors of the linear subspace generated by

the first k - r rows.

4.

An important conclusion from Theorem 1 is that the autoregressive matrices of the

Wi

multivariate observed process Zy must satisfy (2.8) and so

$,U0E = pg.(x) (2.16)

which has the general solution

8, (k) = Bg (KIE™ + C(L - EE") (2.17)

Bratalal e tel e

where g- is any generalized inverse of P that satisfy gg-g =P and C is any

-1Q=~
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arbitrary matrix with the only restriction that the roots of Igz(n)l are on or outside
the unit circle. As the matrix Qy(k) is diagonal, equation (2.16) shows that the columns
of P are eigenvectors of gz(k), with eigenvalues the diagonal elements of gy(k).
However, the matrix g’(k) can have any rank, due to the presence of the arbitrary matrix
C. On the other hand, according to Theorem 2, for every possible solution *z(k) there
will be a set of gi(k) matrices that must verify restriction (2.15). For example, if
Py = 1, ay = 0, and the vector of components follows a multivariate AR(1) process, the
system of equations to determine the parameters is obtained as a particular case of (2.10)

to (2.12) after some straightforward algebra, to be

B + BE.R' - &, - 8.8.8; + 8.4.80 (2.18)

Ls. =18 (2.19)
$.2 - B,

and any set of matrices !u' ’z' g’ that satisfy this system is a solution of the
system. Although there are infinite solutions, they can be characterized as follows.
First, *z is given by (2.17):

$, " BH.E 4 ML -
and, given Qz, we have in (2.18) k(k + 1)/2 equations (because of its symmetry) plus
x2 in (2.19), that is equal to the number of unknown parameters. Furthermore, using
result (2.14)

LA TR A1 TR gz) =0 (2.21)
which implies that, although ’z and 9: can l'ave any rank, their difference must have
rank no greater than the number of components in the system. Also, suppose that h is an
eigenvector of the matrix ’z - 9:' then (Qz - Oz)h = Ah, and assume that )\ is
nonzero. Then, if gi is any rowof Yy as

vj(g, = 8,)h = Ayjh = 0
and h must be orthogonal to the subspace generated by the matrix y, and, therefore,
belongs to the subspace generated by P.

In summary when building a multivariate time series model for a vector of series z,

that is driven by a number of common factors as in (2.1) it may appear that a complicated




model with all kinds of dependency is needed, 1In particular we may finish with a model

shoving feedback among all the components of the vector z.. However, the parameter
matrices in this case must satisfy many restrictions. There may be summarize as follows:
(1) all the autoregressive matrices will have r common eigenvectors that define the
subspace P of the factors and (2) all the § matrices must have rank equal to r and

their columns must belong to the subspace generated by P.

2.4 A Canonical Transforwation

An important problem is to find a transformation of the observed series z, that
allows us to recover the factors. To explain how to find such a transformation first, note

that, if l_’- is any generalized inverse of P, if
then

second, suppose now that we apply a linear transformation M to g  where M = [: B

then - -
B= LtRe
(5o 1= ( :

x,_ = Mg
Bz, BBy, + B,

- - [§1t]

ct =R X2

To recover the r factors Ler B should be chosen such that BP = 0. Then, the first
r components of X, will be equal to the vector ¥e of common factors plus some added
noise, and the second k =~ r components will be just white noise. A matrix B that
satisfies this conditions may be obtained putting as rows of B the k - r eigenvectors
linked to zero eigenvalues of -P_P'. Calling v, this eigenvectors:

BR'(vyeeeeivy ) = 0 = ER'Y

Vk_

that implies,

.'
e b e

")

)

'p-9
and so B = V' has the desired property. Although the selection of P™ could be

9=y
“. %
L4

arbitrary, it seems sensible to choose a generalized inverse that leads to canonical ) ;

’
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kl b‘g'..
] variables as simple as possible. A convenient property is that the x, and X, :;":f"
\l
. components of the new vector be independent, but this is not in general possible unless .
X
] t‘ = I. Assuming this equality, then: E ’
i TNCREY S RRT Y e
and if we choose g" as the Moore-Penroe generalized inverse of p, given by (z't)-1t‘ P il
- the covariance matrix will be zero and the components will be independent.
To illustrate this transformation let us suppose that y, follows an r~dimensional
3] AR(1) process. Then g, is ARMA(1,1) and so is any linear transformation of g.
- However, the parameters of the k-dimensional 3z, process given by X, = g,/ where:
& -1
('R '
_ ! - [. - 2.- -
"-' will be
- -1
g, = 1,0
.. -1
3 Lo
g where:
i -1
4 B =21yl
as can be verified by direct multiplication m“ - l"! =1. 8o,
M .
N -1 -1
3,
_rrvxmg i3 L ¥ R
! T2 Yy
o
: and using the general expression (2.20) for g‘
3 !Y 0
gx -
o g
-
e -
3 in the same way, calling 20 the value of 2; associated with g. =PNP, vhen } =9,
! then, for Theorem 2, the general expression of g’ is
N 8, =8 + AL - B
b and so
4
[) -13-
.
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vhere we have used that, for (2.21) ¥’y = !'g'. 8o, calling x: = [x3 1x, ] and taking
into account that the addition of MA process is a new MA process:
(1~ ‘yn)51t = (3 -8Bk,
Xoe = Bae

that allows us to recover the components mixed up with noise in Xqpo

2.5, Some Simulation Results

We present here two simulations to show how the above theory can be expected to work

in practice. The results we show are representative of the many simulations we have made.

CASE 1

A sample of 100 observations of a vector of 4 time series was generated according to the

model
.8 .2
1.1 .0 y
£ " S 1.0 (y;: + Ee)
.2 1.2
. 2 0
with Ze = I, th = gt and Za = (0 1‘5) Table 1a shows the eigenvalues of the

covariance and correlation matrices and the eigenvectors linked to the nonzero

eigenvalues. To explain these results, first note that as the two factors are

nonstationary their sample variances are much larger than the diagonal elements of Ee and

L1 Fz(O) has a very similar structure to Fz(k) for k » 1. This means that

) < BLE v

Second, as the factor are completely independent and with similar variances,

2ot

gy(l) = Yy(l)l, where vy(l) is a covariance scalar function. Then

- .

.,

T () = vy (2)PP' v
and the eigenvalues of gz(l) are, approximately, proportional to the eigenvalues of pp°

and with the same eigenvectors. The two eigenvectors of gg' linked to nonzero .

-14-
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sigenvalues are (.42 .72 =.21 -.52)
those found in the covariance matriocss.
The rank of the covariance matrices is clearly two and 80 the number of factors in the

system would be estimated correctly.

ana (.37

RV AT

«39

rag iy W

61

«59)

that are similar to

<
s

A P
)

>, 0,

Foa EPC
A

AR A

s
TABLE 1
a) Largest eigenvalue and eigenvector
lag 0 1 2 3 s lag| 0 1 2_ 3 )
A | 1416 136.6  132.9 29,7 19,7 | [ A | 2.35 2.27 2,21 2.14 _ 1.92 Mg
Wt
M .51 .50 i50 .50 Y M4 58 .56 .53 51 43 DR
(-] 81 80 .80 .79 .78 [+] 61 59 87 38 49 t l.. ‘;"
t 00 =01 =08 =06 =11 3 W16 =20 =.26 =30 =41 RV
o 4 KN7ae%e
r -.28 -, 30 -e33 -.35 -, 40 X 51 -.54 =57 -.60 - 64 "‘;""-"
ey
covariance correlation RO
e
%) Second largest A
LR Yo
?.‘-_.“.'7\,
lag | o 3 2 3 s |liagl o 9 2 3 s X:
A 36,6 33,6 30,2 28.4 24.2 A 1.59 1.41 1.30 1,24 1,10
M4 .19 .19 .18 .17 .16 M4 .35 .29 .27 .23 .16
g 27 <12 «10 09 +06 ] «26 22 «18 14 .04
° .64 .64 .63 .64 .67 b3 .76 .78 .80 .84 1.02
xr 73 173 « 74 075 77 r 48 .52 50 «83 +81
c) Third and fourth eigenvalues : .
2
| 1ag ) 1 2 3 4 8¢ ] o© 1 2 3 4 s
3rd -89 -.04 -.25 -.04 - 18 3rda «013 +003 -.009 .0008 -,0025
4th .81 «07 -.04 .04 -.04 4th .04 -,0008 -,0019 -.000%" ~,0023

Table 1b shows the eigenvalues and eigenvectors of the first partial autocorrelation

matrices.

dominated by two large eigenvalues; (2) the eigenvectors linked to these two eigenvalues

in

W&, ’~

.

b TN AW, L I LR L R T
.::;: .'.‘::_‘.‘. ..:i Y o:."O ‘.$;.: 3\»}}' _.:.-. ?:?‘." 3 Xh
KW, AN s G E AL ’, \

P(1) show, roughly, the same structure that the largest two eigenvectors in the

"4 1'-'\ -

-18=

LA
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- S AN O -\\’\ P A ) e "

The identification of the rank is here less clear although (1)

P(1) is mainly

vats &y
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covariance matrices, and (3) P(2) is small and nearly zero. These results suggest that

»
L

the model for the common factors is probably AR(1) and confirm mildly the hypothesis of

. two factors leading the system.
x
‘;.
< TABLE 1b
Partial Autocorrelation Matrices
P(1) P(2)
.97 .87 .19 .10 -.14 21 .042.091 |
«65 27 -1.39 -.28 =57 «30
068 065 076 051 -62 060 ml.x
.66 -.35 -.89 -.62 <11 -.30
3 .50 -.65 .52 .52 -.41 -.86
- Note P(L) =0 for &> 2
- Table 2 shows the eigenvalues of the estimated parameter matrices and of its
N differency. Note that, as gy = I, then
?‘-T $E-R -
" and for any nonsingular matrix C
i 10l ¥
:-: and so, any linear transformation of the columns g may appear as eigenvalues of ‘.. The
': rank of the difference ¢ - § is nearly 2, which confirms the existence of two factors.
Note that the two largest eigenvalues of g’ are, in this case, similar to the eigenvalues
o of the covariance matrices.
‘: Taking this two eigenvalues as factor loadings to build the transformation, the new
_' vector of transformed series will be given by
<74 -.58 24 - 24
-1 -3 -.06 -.74 .56
. B ] a2 62 .01 -9
. «29 +36 «55 «57
»
- and, using this transformation, the new series A !!t will have parameters
‘.
-,
= -16-
.
2
)
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T4 ¥, Car ™
etk

L] .‘. [ ] L ] L[] - L ] [ ]
.‘0 --70 . . [ ] . . »
&% ") .0 70 1.0 A [ ISR S A O
. .80 . .98 . . . .98
* .13 - L] L) * L] [ ]
032 -0.5 . . [} . . [
= 52 1.0 .23 P e 1 I IR
[ ] 1.1 . .1‘ . . L ] .1.
TABLE 2

Bigenvalues of the Estimated Parawster Matrices

’ ) ¢-0
1.0 o’° =477 ﬂ!!_ -,99 =14 .28:.091 +96 073 .25 .06
64 «16 .02 =18 27 «43 42 «31 -1.18 71
97 .18 41 «96 .58 1.41 72 +46 0 67
=22 .73 1.03 .17 78 .35 comPlex} i a2 .02 -.43
=87 .87 =.50 ~-.14 -12 16 222 =,69 29 .82

with Ay ® Ay has rank equal to two. 80 we will obtain two random component plus the two
stationary factors contaminated with some white noise, as expected.

The main conclusions from this exercise are as follows: (1) Although the
determination of the number of factors using the rank of the matrices may be not clear for
some matrices, putting together all the different pieces of information that can be
obtained, the picture is normally quite clear. (2) The factor loadings can be cobtained
with reasonable accuracy from the eigenvectors linked to large eigenvalues of the ¢
parameter matrices.
case 2

The generating equation and the sample size in this second example are the same as in
Case 1. However, now only one factor is nonstationary and it has been allowed some

correlation among both components. The factor time series model is
6 0 Yie e 2 1,5
(-1 Is) ()= e T = ]
o 1.0 Yoe Ly a 1.5 3,8

Table 3a Aisplays the eigenstructure of covariance and correlation matrices and Table 3b

that of the partial autocorrelation matrices.
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TABLE 3a

Eigenvalues and Eigenvectors of Covariance and Correlation Matrices

-
N

:f a) Largest eigenvalue and its eigenvectors
s Covariance Correlations
i' lag| o 1 2 3 4 5 0 1 2 3 4 5
A ]54.10 44.63 40.66 35.87 32.46 30.74 2.98 2.2 1.9 1.6 1.4 1.3
.22 .48 17 «15 .14 .13 «53 .43 .40 «35 32 .28
.15 .08 05 .02 .02 .02 .43 «25 .16 «07 .06 .04
. +63 .63 «63 «63 «63 .62 57 .61 .63 64 64 64
.73 .75 «75 <76 .76 «77 «51 61 +65 «68 «69 71

b) Second largest eigenvalue and its eigenvector

. lag | © 1 2 3 4 5 0 1 2 3 4 5
: A 5.84 3.07 2.1 1.33 .84 .08 .83 -46 «33 21 16 .01
+.55 49 51 54 .35 -.60 31 .31 .36 .38 23 75
+.78 .80 77 77 86 «65 «70 .77 «76 .80 <90 -.44
. -.08 .03 07 .01 =27 .32 -.42 ~.31 =-.31 -.31 -.39 -.47
-.27 ~.34 -.40 -.36 -.25 =-.23 -.48 ~.49 =.53 =.50 =-.30 -1

c) Third and fourth eigenvectors

0 1 2 3 4 5 0 1 2 3 4 5
1.2 +.16 -. 14 «04 07+.061 .17+.18i «15 .03 =-.02 =.01 .01 -.01
+.80 -.13 +,06 =-.16 .07-.06i .17-.184 .05 =.005 .002 «005 «005 -.04

TABLE 3b

Bigenvalues and Eigenvectors of the Partial Correlation Matrices

P(1) P(2)
~8e .46 ~28 =.09 =¥ Y) =.0483 -152.041
R =
.15 1.5 2 +.07 .68 -.29
- .03 2.4 1.0 -7 -.52 -.23
. .67 .59 .16 -.93 a7 -.79 Complex
: .82 -.23 0 .30 -.35 1.13

D i s

LU N )

() =0 2> 2

¢« ¥ _®
I8 et
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The main conclusions of both autocovariance and sutocorrelation matrices are that (1)
there are probably two cosmon components; (2) one is much more important than the other;
(3) one seems to bde nonstationary taking into account the slow decreasing of the largest
eigenvalues, whereas the other seems to be stationary.

It is important to see the differences with respect to Case 1. If we compare Tsble 1a

with Table 3a it can be seen that the second largest eigenvalue in Table 1 decreases slowly

and the eigenvector is fairly stable even for lags as far as five. In contrast with this,
the second aigenvalue of Table 3a decreases quickly, and is clearly zero at lag five, as
shown not only but its small value but as well by the change of structure of its linked
eigenvector.

The partial autocorrelation matrices show that, as far as the rank of these matrices is
concerned, the cbserved results can differ from theory. The only clear indication in this
case is that the general pattern of the eigenvectors linked to the two largest sigenvalues
is not in contradiction with the previocus results.

Table 4 presents the eaigenstructure of the estimated parameter matrices. As in the
previous simulation the final estimated model has many significant coefficients both in the
autoregressive and moving average matrices, and it seems to represent a quite complex
relationship among the series. However, the matrix ¢ - 2 has two larger eigenvalues
similar to those of P(1).

If we accept the hypothesis of two main factors and choose the two largest
eigenvectors of § to define the matrix of factor loadings p, the resulting paramster
watrices for the x = 55&. series can be decomposed as before as the sum of two matrices,

t
one of which cancels in both terms. The simplified parameter matrices are:

.as

¢ o o »

- s o *
]
.
.
-
-
o
.

L] . . l"

showing one nonstationary factor and a second stationary factor.
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TABLE 4
¢ 8 -0
1.0 .85 +.57 ~.53 .99 -.83 .332.088 | .77 .52 .11 -.32
.14 1.32 .37 .65 .93 -.67 .26 1.2 .22 .26
-.03 2,30 .77 -.34 .57 .03 A5 1.0 1,0 -.27
.80 <2.40 -.16 ~.57| |-.60 .48 SO®Plex| 1.0 28 .14 -.s4
.94 -2.90 -.48 =-.36 .67 .53 .77 -.12 .08 .37

3. THE ONE FPACTOR MODEL

3.1_ Introduction

The one common factor model is, on the one hand, important in its own right because it
describes the relationship of several measurements over time of the same dynamic
variable. On the other hand, this situation is going to appear approximately in the
multifactor situation when one of the factors has much greater variance, and for this
reason is more important than the others.

We will assume in this section that in the general representation (1.1) P 4is now a
k X 1 vector. We will concentrate here in the case that y, follows an AR(1) process
and will analyze the behavior of the system as the parameter QY of y. approaches the
unit value.

Wwith this set up, every component Z;e of z, will follow an ARMA (1,1) model with
the same parameter ¢y' and with parameters 01 that, as can be seen equating moments

must verify:

2 - 2 -
eiq»y °1“‘1 + 1+ oy) + oy 0 (3.1)
2 2
Py% 2
where by = PR being p; the ith component of P, 9, the variance of the noise in
c
i

the model for y, and oi the variance of the ith component of the measurement error

vector €_. It can readily be seen from (3.1) that the parameter o, in each series

t
depends on . 1t v, which means that the measurement error can be ignored, 0,

tends towards zero, and if u1 + 0 everything is dominated by the noise and e1 * 9,

which means that this component will be white noise.

"

x)
.l \.).

Yy

e

cor ey
4 'y 4
,
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3.2 The Covariance and Correiation Matrices

Calling Yy(k) to the autocovariance cosfficient of order k in serles y,,

I(0) = PRy (0) + I
I (k) = gR'Y (K) k> 1

and for k > 1, (1) all the covariance matrices will he symmetric; (2) all will have the

K SEEE RIS DAY IS

rank equal to one; (3) all will have an eigenvector equal to P linked to the nonzero

eigenvalue; (4) all nonzero eigenvalues will be proportional to the autocovariance or

autocorrelation function of Yoo

H So, in the special case in which y, will follow an AR(1) the nonzero eigenvalues
of the covariance matrices must decrease exponentially.

The partial autocorrelation matrices can be obtained from equations (2.5) and (2.6).

The first term is

1 1

N P(1) = 0) (1 + 0)) Tpprz”
L () = ¢ v (01 + ay (00 7'ER']
where now a = g'EE‘g, and so

ay (0)

Booe = el mry(o)j 4

-i that shows clearly that if the signal to noise ratio “Y(O) is much greater than 1, the

first partial autocorrelation matrix will have an eigenvector P 1linked to the eigenvalue

¢y. Note that in all cases P will be an eigenvector of P(1) to difference from the

wultifactor situation.

For the others terms, using (2.5)

=1 2-1

P(e) = BLy_(4) = ) )} v (= 1)y (J)P'A Y1,3,00p)p 0 p (1)

. Y 1-1 3-1 y Y -=- - = =

>y

)

f: where

:-- -1 l-‘ -1 -1

B = (Y (OIRR' + & = L L v ()Y (IIER'A (1,3,7)BR")

& Y € i=1 j" Yy Y -n

),

- calling
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1
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1

0 "

4

1 Cr

lj1 L=1 -1
=y (0) = ) ) Y.(4)Y_($IP'AT(4,3,0)P (3.2)
Y =1 gey ¥ ¥ =R -

)

A ee wrv . veR-w
. Hh
(AP

2-71 l-“l -1
=y (L) = ) ) Y. (- )Y (JIP'A (4,3,0)P (3.3)
Yy 1-1 j-1 Yy b4 - = -

f,

- -1
Py £,PR'(d,PR" + L)

and using the expression for the inverse of the sum of two matrices one of them being

nonsingular (see Section 2)

P2y = L;—%iaigagg'gg' (3.4)

and so E(L) will have an eigenvector equal to P with eigenvalue afz(i + adl)-1. It

can be seen from (3.2) that, again, if the signal to noise ratio is large, the eigenvalue

linked to the P eigenvector of P(f) will follow the partial autocorrelation function of

the component y,-

In particular, if y, follows an AR(1), B(l) will be near zero for £ > 1 if the

signal to noise ratio is large. Otherwise, P(L) will be different from zero and will

have a nonzero eigenvalue linked to P.

3.3 The Parameter Matrices

The parameter matrices of the process can be obtained equating the representation of

the covariance matrices implied by the one factor model to the covariance matrices for an

ARMA (1,1) vector process. Then

Lo = ER'Y,(0) + B = Lig" + 1, - st + ot @' (3.5)
Iy = BT (0 = g8t - de (3.6)
- ¢ = ' .
=RV 0 =L ¢ x> 2 (3.7)

where ¢, § and ;u are the matrices that define the observed vector process zZ,, and we

use Qy and o: to represent the parameters of the AR(1) model for the common factor

Y¢. Using (3.7) for k 2 2 it is readily seen that

-22~
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° and so .Y must be an eigenvalue of § linked to the eigenvector P. The general
solution of (3.8) is (see Rao and Mitra (1971)):
8= @' o R +0.gtx - (2 EE") (3.9)

where C 1is any arbitrary matrix with the only restrictions that the eigenvalues of ¢

Y

sust be on or inside the unit circle. Eliminating the covariances from (3.3) and (3.6):
£, =L +ee'od+eter-gter (3.10)

3 -
Lo =10 (3.11)

Rquations (3.8), (3.10) and (3.11) define the restrictions which must be cbeyed by the

h parameters of the system. On the whole, the system has not an unique solution because

there are more unknowns than equations. However, once $ is assumed fixed according to

(3.9) the parameters matrices § and } are determined by (3.10) and (3.11). It can be

verified that the solution of these equations is:

-1 (3.12)

g=g-0, T

§, = Apr + L, (3.13)

where ¢ 1is given by (3.9), b = g'g;'g and A verifies:

2 2 2 2
bA® - l(bu. + ’Y 1) - L 0 (3.14)

and corresponds to the solution with 8 having its eigenvalues on or inside the unit

circle. Note that if .y +0, A~ oi. as expected., Equations (3.9), (3.12) and (3.13)

summarize the relevant properties of the matrices of the process: (1) ¢ may have any

rank but must have P as an eigenvector with eigenvalue Qy; (2) @ may have any rank

but again must have P as an eigenvector with eigenvalue:

¢

—e
T S e v

and using (3.14), the expression of le as a function of the parameters of the common

factor is:
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Aghy = Aglbog + 4 + 1) +¢ =0 (3.15)

and if we compared (3.15) to (3.1) is clear that Xe will be similar to the univariate

, paramster of the series, although smaller; (3) ¢ - g must have rank equal to one, and p

- will be the eigenvector linked to its nonzero eigenvalue; (4) The Ratrix !“ will be, in

general, a full rank matrix.

3.4 The Canonical Transformation

In the one factor case, the canonical transformation is the matrix of eigenvectors of

. .l '0 lo-.l..l.l"

PP'. Calling }' this matrix, the covariances of the transformed process x, = Nz, will

be

L(x) = gL, (oY

2
YylIPy

votpi
" T (0) =
=X

g

"o

and the residual covariance matrix will be

tii 0!
L]
+ M M

"_ Ex-ﬁ“!.-

The covariance of the factors and the canonical components X, is

La®) = Blxg) = Ry, + ML,

and, in the particular case in which the variance of all the measurement errors are the

same, L = u:;

R, 0,

H I
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vhere ‘k-i is the unit matrix of dimension kX - 1 and !i are the rows of M, that is, !_ 1

the eigenvectors of PP'. This equation shows that the covariances between the factors and

the series are proportional to the eigenvalues of PP'.
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4. THE FACTOR MODEL WITH DEPENDENT PACTORS

4.1 Formulation

If we remove the restriction that the parameter matrices of the ARMA model for the
factors are diagonal, some uniqueness conditions are needed to determine the model. One

suitable normalization is to impose P‘RE = I, that means that of all the C wmatrices:

2K SNt
we choose C such as (5-1)‘5'5-1 = I. Other possible selections are to choose C to
diagonalize some of the parameter matrices of the factor model. For instance, if xt
follow a multivariate AR(1), < could be chosen to diagonalize ] which leads back to
the uncoupled case. However, in the general case in which y, follows a general ARMA
(py,qy) model, the condition that C has to diagonalize any particular parameter matrix
is arbitrary. Thus, it seems more natural to link C to the properties of the factor

loading matrix.

4.2 Properties of the model

Table 4.7 summarizes the differences between the basic properties of the uncouple
factors and the couple or dependent factors model. The main difference arises related to
the eigenvectors of the covariance and autoregressive parameter matrices that are no longer
columng of the factor loading matrix. Equations (2.4) and (2.16) do hold in this case but
the conclusions we have to draw from them are different. For instance, starting with (2.4)

T (x) = PI (k)P' k21
=g =ay =

-1
and assuming that gy(k) = gkgkyk where -Dk is diagonal, is clear that gz(k) has the
same eigenvalues than £¥ (k) but with eigenvectors gt_]k, v, where the columns of V

belongs to the null space of gg'. To see this write

-1

D 0 u_p'
Ez(k) - [ggk . !] =k = =Kk =
9 9 v

that shows clearly the eigenstructure of Ez(k). Of course if L‘Y(k) is diagonal 4 ~1

and we obtain the uncoupled case.
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:-' As for the autoregressive parameter matrices, the condition is

A 8,008 = Bg, (%)

.: and assuming that gy(k) has lineary independent eigenvectors and writing

L - -1

:’: gy(k) !kzk'-'k » where gk is diagonal and contains the aiqonv‘aluol of ‘y(”'

TABLE 4.1
- ’32‘_0&2 Uncouple Factors | Couple Pactors
) rank ([ (X)) =13 k9 Yes Yes
;z(k) symmetric Yes No

" eigenvectors of E'( k} columns of P Yes W .
-_-L: eigenvalues of [ (x) eigenvalues of gy(k) Yes Yes .
- rank (P(2)) = r Yes Yes !
. T, ~ ARMA (p, = py, q; = max(py.q,)) Yes Yes

'_::Z rank (§,) =r 131 Yes Yes

:f': eigenvalues of 23(” are eigenvalues of !y(k) Yes Yes

N eigenvectors of gz(k) are eigenvectors of ty(k) Yes No
f" 8, (kIEE, = EfEx '
:: ™ that shows that the eigenvalues of gy(k) are eigenvalues of ‘:(k) as well, with :'

eigenvectors g!k . N
Z-'_' To build the canonical transformation we need to determine the null space of PP'. I:
:: Suppose that H is the matrix of eigenvectors of the first autoregressive parameter "-;
L AN
- matrices of the observed series Z.- Then, r columns of H are gﬁl, whereas the RSN
s o
other k -~ r columns are arbitrary. We can partition H and §-1 as P"'

‘:-' by
. o s
.':- "-1P‘ ‘E'.":
b -1 = = | N
e = [P, l.‘11 |- B '..':}
- B, ' v
. LT;\
o, and obtain gl-li and i_';‘g'. The determination of these columns can be made because (a) :__
f:. ' r is the rank of S.“‘" P(1) and !i and can be determined; (b) these columns are _
- RO
! G
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linked to the eigenvalues of gyﬂ) that are approximately those of P(1). Then as

-1 .
GIRIUNY S

¢
the null space of (_Pg,)(g',"g') is the same as that of Pp' and ¥Y' can be obtained
Y
\' taking the eigenvectors linked to zero eigenvalues of this matrix. The transformation
-
"..\.' W-1P'
=] =
M=
= v'
-
i will produce, as the uncoupled case, a decomposition of the Z, Vvector into two
S components: The first will contain the factors mixed up with noise, and the second
> 4 -
. component will be a vector of white noise. L
- -1 -1 .
LIRS [N x
- =1t -
o X = !E - = B
S vie %o
= = w=t RS
e

g "
- An interesting property of the transformation is that the components obtain in x4 -

. will be, in practice, weekly related. For example if y, follows an AR(1}, £;1!t will
follow an AR(1) process too, but with a diagonal autoregressive parameter matrix. _
o -
.:_;
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S, BOME PRACTICAL COMMENTS ON THE APPLICATION OF THE THEORY

a
-
0 2

v e
-

-

There are three main decisions that have to be taken to apply the following theory to

\ 4 -
-.'.]t' a real data set of time series. PFirst, the number of factor has to be identified) -
N e
! "\'j . second,the factor loading matrix P has to De estimated, and third, the decoupling _;'
;\* "':-‘
AN transformation M has to be built. We will briefly comment on these subjects on the basis o
‘ of our experience.
:f.~ To identify the number of factors we have four different tools at our disposal: The
covariance matrices, the correlation matrices, the partial autocorrelation matrices and the
§ Dparameter matrices. We have shown that the rank of all these matrices should be equal -
;'..:- to the number of common factors driving the system.
; ; However, wvhen the variance of one of the factors is very large compared to the
variance of all the other factors, the identification of the dimension of the factor space
using the rank of the covariance and correlation matrices can be misleading. 8uppose for
_-: instance that the factors follow an AR(1) model. Then if
2 @ -4g -8
e the covariance of y,  will be
P (0) =T (1)'¢' + I
:-;. 'Y( } _yl )gy &a
N P () =T (£~ 1)¢* L>1
3~ =y ! 5
"™
::\ Suppose that E. is diagonal. Then, using the spectral decomposition of r_y(o)
~'?
r
Lo = 1 wyy
., i=1 S
KA
.:-; vhere U, are the eigenvalues of 2,(0) and y, its eigenvectors. As ny(O) is )
o N
':-:. diagonal, W, are also the variance of the components, and if the variance of the first NS
B factor is much larger than the variance of the others Sai
o '
< Lyto) = vy 0%,0%1,0
.:: and in general
N
]
~
< Lyt®) = ¥y o¥q,5¥%,x (5.1)
- where LTI is the largest eigenvalus and ¥4 x ite associated eigenvector. Then
at ’ ’
A [}
- L0 ¥y oBq,0R1,0 * &
o
:;j- -29=-
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* Uy BB,k

where 51 So, all the covariance matrices will be dominated by a large
’

17 By
eigenvalue and will have rank equal to one. In particular, if all the components are
nonstationary and gy =1, then h1'° = h1,k for all k and the covariance matrices will
display the structure we have obtained for the one factor model.
However, as the columns of P are eigenvectors of 1: whatever the variance of the

factors, if gy =1I, 2: will still have at least r-roots on the unit circle and at
least r eigenvalues equal to one, linked to the P vectors. For this reason the
jdentification of the number of factors looking only at the rank of the covariance matrices
could be misleading. Note that this problem is not resolved by looking at the correlation
matrices because, calling gz(k) the autocorrelation matrix of order k.

B, (X) = Diag(L, (0N~ "2 (x)ptag(r, 0”12
and using (5.1)
B ® Pl lh x

where
172

h, = plag(L (6))" pv, . .

and the same situation will appear.

The rank of the nonzero partial avtocorrelation matrices can also be misleading when
Ez(O) is almost singular. Then the precision of the computation of these matrices is
very low and the determination of how many roots of the partial autocorrelation matrix can
be considered equal to zero is not easy. As a general rule, the simulations we have made
have shown that estimated eigenvalues as large as .5 can appear for theoretically zero
values in the partial autocorrelation matrices when the variance of the noise is small
compared to the variance of the signal.

The rank of the J matrices seems to be the safest way to determine the number of
factors. When there is disagreement between the three features we have analyzed, a

conservative strategy is to start assuming a small number of factors and proceed

iteratively, building the components and analyzing the noige for further structure.
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The factor loading matrix R should be determined from the eigenvectors of the
* maximum likelihood estimator of the autoregressive parameter matrix ¢. Only in the one
factor case the column P could be cbtained directly from the covariance or partial
autocorrelation matrices. A well known rule in matrix computation (see Stewart (1973)) is
that the eigenvectors of a matrix are well-conditioned only when the matrix has distinct
and well-separated sigenvaluss, whereas if the matrix has repeated or clustered eigenvalues
the estimation of its eigenvectors may be ill-conditioned. This means that, on the one
hand, we can expect a good agreement in the one factor case among the different estimations
that we have of the vector of factor loadings; on the other hand, when we have saveral
nonstationary factors, we have to expect this same number of unit roots in the

autoregressive matrix and the estimation of the eigenvectors is not expected to be very

accurate. Yor this reason, even if the factors are independent, we can finish with factors
that have small correlation or with final noise processes that are not exactly white noise

processes.
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6. EXAMPLES

)

6.1 The Series of Wheat Prices in Castille

g 4

:';.. Figure 1 shows the series of the price of wheat in five provinces of Castillia, Spain
lf'
- from July 1880 to December 1890. Therse provinces are Avila, Palencia, Segovia, Valladolid

and Zamora. The source of the data is Sanchez-Albornoz (1975) and Pena and Sinchez
Albornoz (1983) have studied some of these series during the second half of the XIXth
century, pointing out their lack of seasonality.

The analysis that follows is made with the series in logs, although the conclusion are
not depending on the particular transformation used.

Table 5 shows the univariate model for the five series. These models are broadly

consistent with the hypothesis of some common factors following an AR(1) model. Table 6

displays the eigenvalues and eigenvectors of the covariance matrices up to lag 6. There is

a strong eigenvalue that decreases slowly linked to a fairly stable eigenvector. The

second eigenvalue is rather small and the eigenvector is not completely stable. Finally,

the other three eigenvectors are practically zero. Then, it seems there are at least one

important common component and perhaps a second one although much less important than the

first.
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TABLE 5

Univariate model for the series

Q>

V¥ n Zamora = (1 - ,16B)

(1.84)

V 2n Avila = (1 + .11B) a, 2 " 0.039 Q(23) = 32.8
(1.30)

V &n Palencia = (1 + .18B) a, o, = 0.030 Q(23) = 24
(2.02)

V Zn Segovia = (1 - .16B) a, o, = 0.057 Q(23) = 16
(1.77)

V in Valladolid = (1 + .15B) a, % = 0.031 Q(23) = 36.9

(1.70)
(1 - .158 - .2032) V &n Valladolid = a, g = 0.029 Q{23) = 34.6
(1.70) (2.30)
g = ,049 Q(23) = 23.9

The values under the estimated parameters are t-values.

Box with £ degrees of freedom. x§3(0,05) = 35,2,
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TABLE 6

Eigenvalues A _and Eigenvectors Vv of Covariance Matrices

810 20 10 10 10

36 .27 .80 .33 .24
0‘3 - 14 006 -.80 -40
+50 57 -.58 .22 .19
.44 .10 «12 =21 --36
-49 -.76 - 15 .41 .05

a) Largest eigenvector and eigenvalue

lag 1 2 3 4 5 6
.
A 777 735 693 647 604 560

«35 «35 34 .33 .32 .32
.44 44 .45 .45 45 .45
v 49 49 48 .47 .47 .46
.44 44 .44 .44 «43 43
.49 «50 «51 «52 +53 «55

b) Second largest esigenvector and eigenvalue

lag 1 2 3 4 5
A 12 13 11 8 5 7

.65 <40 .08 21 «38 .18
- 18 =.17 01 =-.09 26 23
v .28 +46 .18 «31 .05 34

«06 .16 .04 <16 .10 .43
=68 =.T77 =31 =.57 =.68 ~1.15

c) leftover eigenvalues

lag 1 2 3 4 5 6
3rd 0 1 4 3 5 1
4th 5 4 4 3 4 2
Sth 5 4 4 1 0 2

Note: All the eigenvalues have been multiplied by 104,
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Table 7 shows the eigenvalues and eigenvectors of the first two partial correlation
matrices. The two main eigenvalues of the covariance matrices appear again linked to the
largest and third eigenvalues of P(1) and, less clearly, in the two negative elements
of P(2). Table 8 shows the pattern of significant coefficients in the exact maximum
likelihood estimation of the parameters of an ARMA (1,1). It can be concluded that there

is a very complex relationship among the series with all kinds of feedback present. The

eigenvalues of the matrices ¢, g and ¢ - 8 are shown in Table 9. The five eigenvalues
of 2 are close to the unit circle, what can wrongly lead to the conclusion that there are
five nonstationary factors. However, the rank of % - 2 is nearly two, leading to the
conclusion that there are 2 factors in the system. The eigenvectors linked to these main
eigenvalues are again very close to the previous eigenvectors of the covariance and partial
correlation matrices, and these two eigenvectors appear approximately in the ¢ and ]
matrices, as shown.

In summary, there is strong evidence of at least one, and probably two, common factors
driving the system. The first is linked to an eigenvalue that is broadly speaking a mean
of the series. The second is roughly the ratio among Avila and Zamora. This result makes
sense because this second factor affects the two more western provinces that are closer to

the Portugal border.

TABLE 7

Eigenstructure of the Partial Correlation Matrices

.95 <63 .69 .41 .04 -.47 =.09 .41 <17 «20

«37 69 -.94 «51 .02 .58 «77 .04 .23 «20

49 -.16 2.79 -.16 .05 «32 =.23 51 =.36 -.77

53 -.05 1.26 -.20 -.93 .48 =.59 ~,53 +95 .43

.48 -.31 1.96 =-.16 27 38 -.05 -.34 -.37 -.14

57 =.74 4.94 .90 ~-.24 .43 .16 «67 .38 1.40
P(1) P(2)

-36~




TABLE 8

Significant values in the Parameter Matrices

+ . - + . + - - . +

. + . + . . . . . .

. - + + . . - + . .

. . . + . . . - . L3

. . . + + » - - . +
] ]

TABLE 9

Eigenvalues of the Parameter Matrices and Main Eigenvector

¢ 991 oar.0et  .9g-.081  .Bak.1ei .8d-.t4t
8 -.5{18) 51028 ey a1 .98-.181 .85
g -8 | 1aelt® .34(2e) 4 -.05+.034  =.05-.031

We have chosen the eigenvectors (.37 .49 .53 .48 .57) and (.69 0 0 0 =.74)
to build the transformation. Any other election does not seem to change the results. With

this two generators, the matrix |} turns out to be

«52 «07 =.51 ~.48 «49
«26 -.88 »09 N 24
04 ~.15 «70 =70 .03
.41 «41 .45 .41 .38
<74 +07 <07 07 -.66

The resulting five series are plotted in PFigure 2. The new gx and gx for the

transformed x series obtained transforming the. parameter matrices of z turn out to be
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.« e . . 96 . . . .

- .. . .. . 98 -.19 . .

g mMM = . . . . . +] . 16 .88 . .
S AN YRR -.30 .82 -.24 . .

« e e . .92 . 25 =27 . .

.« . . . . 90 .19 15 . .

i . . . . 93 =23 . .

g =MeM = . . . . . +] . 6 1.0 . .
.« . =55 . A2 .8 -2 . .

e .20 .50 . 33 =19 . .

where we have used a dot to indicate a parameter value below .1. This decomposition shows
that there is a matrix A of rank equal to three that can be subtracted from both sides.
All the rows of this matrix are orthogonal to the vectors (00010) and (00001) and so,
according to Theorem 2, could be subtracted to obtain three independent sequences of white
noise plus 2 factors. The first factor is, according to the fourth raw of M, a mean of
all the series and describes the general trend of the market. The second factor is
stationary and affects to the most westerly provinces, Avila and Zamora, and although
stationary seems to have an ARMA (1,1) structure. The factors are not completely
uncorrelated and a weak relationahip seems to exits between them.

To check all these results we have built a model for the factors from scratch. Table
10 shows the parameters of the model and Table 11 the correlation and partial correlations
of the residual. The first two component of the decomposition are stationary AR(1) process
uncorrelated at all lags and the third is white noise. The fourth is the nonstationary
component that describes the general evolutién of the market and the fourth is the
differential effect of the occidental provinces. This factor turns out to be uncorrelated
with the main trend.

The results are sensible and confirms that the five series are driven by a main factor
that explains their nonstationary behavior. The strongest correlation of the main factor
and the five series is with Valladolid r = .99 that was the greatest producer of wheat in

Castillia and is consistent with the expected behavior "a priori®.
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Main Factor (A) and other components of the original series.




] TABLE 10
.‘5 L] . . . L . . . .
(.07) .
. lss . . L] . . . . .
(.06)
’x - . . . 3 . ax = . . . . .
-.43 . -.74 .95 . o e s =50 .
(.14) (.12)  (.02) (.06)
. . . . .76 . e . . .
(.07)
TABLE 11
1
10.34
_':: :2 1 4 .59 4.54
R.=| ‘o0 .49 .28 1 107 =[-4.40 .76 9.21

.08 S.21 4.34 25.25

=-26 -.04 .08 .24 1 2.53 =.25 .71 3.79 9.56

Parameters of the transformed series and correlation among residuals.

As a further check of the methodology we have analyzed the wheat price series of three
provinces of different economic behavior in which a unique common factor is not expected.
The provinces we have chosen are la OOru;a, that is not wheat producer and is the North of
Spain, Zaragoza, that although producer of wheat supplied to Aragon and catalu;a, and
Valladolid again as representative of Castillia. Table 12 displays the eigenvalues of the
covariance matrices and although there is a large eigenvalue linked to the general mean,

the other two eigenvalues are fairly stable. The partial autocorrelation coefficients show

3 strong roots and the estimation of the model in Table 13 shows that ¢ - § has rank

i

three and it is not possible to reduce the dimension of the system. There are three

factors, and the three are nonstationary as expected.



TABLE 12

Eigenvalues and Eigenvectors of the Covariance
Matrices of lLa Coruna, Valladollid and Zaragoza

. lag 1 ¢ 3 4 5 & 1 2 3 4 5 6
A, 486 479 459 441 422 402 A, S0 4 & & a3
42 .43 .44 46 .47 .48 64 .64 .66 .66 .68 .66
49 .47 .45 .43 .40 .38 =78 <75 =74 <76 =.73 =.75
.76 .77 .78 .78 .79 .19 18 .19 .19 .20 .20 .22
A, 9 7 4 s ¢

«67 <68 .69 .68 .68 .68
39 <37 .37 .38 37 37
-.63 -.62 -,63 ~.63 -,63 -, 63

TABIR 13

Eigenvalues of the Parameter Matrices of the Model
for lLa Coruna, Valladolid and Zaragoza

.93 1 +93 .21 A4 ~-.14 1 .92 .73

1 «78 =4,5 1 1.7 38 -6 =1.5 1
g=} o .0 o g=] 0o .78 .79 g-8=] 1 2 o

0 71 1.4 0 -.62 64 0 1.0 0

6.2 The Series of Stock Prices Indexes

The three series studied are monthly averages of the Dow Jones Index of 30 Industrial
Stocks (DJ Series), the 8tinZ2urd and Poor Industrial Stock Index (ID series), that includes
400 stocks, and the Standard and Poor Stock Fiice Index (SP series) that includes 500
companies chosen from all sectors of the U.8. economy. The sample period is from January
1966 to December 1981. Pigure 3 shows the evolution of the three series that have been
standarized removing their means and dividing by their standard deviation to show the three
in a common scale. Table 4 shows the univariate models.

We will report here the analysis on the logarithm of the serias although the

conclusion are robust to the scale of measurement. Table 15 displays the eigenstructure of

the covariance matrices and, as the spread of Dow-Jones i3 quite different from the other
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two, the esigenvalues and eigenvectors of the correlation matrices are also presented. Both lL."'-.'-‘w.
set of matrices show three very stable sigenvectors. The eigenvector linked to the W
greatest eigenvalue indicates that the first factor is a weighted mean of the three v
series. Thus, it can be interpreted as the general trend of the stock market. The second

factor seems to take into acocount the bshavior of large industrial corporations (as

ol

measured by the Dow Jones Index) with respect to the reat of the market. The third

2TAL
e
eigenvalue is very small and, consequently, the system seems to be driven by two factors. é;-,?;ig
Sy
The third eigenvalue reprasents a constant relationship among the three series in the whole "’;-;;..
e
sample period. ‘This relationship is
6 tn X+ 09 n X2 e
) is 18 fe Tl
and 1s a weighted combination of the performance of the industrial sector (defined by LI B
RN
and 1D) with respect to the whole of the market (LS). The fact that the eigenvalus linked 5.3;;;--,‘
i w0
to this eigenvector is equal to sero means that this relationship has been stable in the 5
.," ‘ v
stock market. E‘-:i.:
s
Jdentification suggests a multivariate ARMA (1,1) model for the vector of the three E,_;" 3
ll\.'.~ -y
indexes. When fitted Dy maximum likelihood, and after deleting the nonsignificant L,-_f "-'
parameters, model A of Table 16 is obtained. The § parameter matrix has the remarkeable
T
property that rows one and two are nearly identical and the rank of 0 is two. Actually, ::g:' ‘,
the § matrix could be decomposed as the addition of r:vs
ZABLE 14 LS,
: "
Univariate Models for Stocks Series RN
Model [} (35) ti &
- o 2 AR
Vi = (1 + .IGI)A 251 33,5 L.‘; .
Vs = 1+ .acn)n +262 4.5
ViD= (1 + .:nut «377 31,9 ",’p:.-
€.07) IS
3350 &
LI = in of Industrial Standard and Poor Index; LS = fn of Standard and Poor Indexs .‘ iy
» '
LD = fn of Dow Jones Index. Q(A&) 4is the Iunj-Box statistic with £ degrees of freedom. .
LA
;ﬂ\ ,,m
JENT
F o
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2 TABLE 15
T Eigenvalues of Covariances and Correlation Matrices
of the Series 2Z{ = (LI,LS,LD) <k
= foss
'::, F\'.:
-3 a) Covariance (eigenvalues x 104) E:-‘
" F:&
. largest Eigenvalue Second Eigenvalue
X lag ! o 12 3 &4 s lagl o 1 2 3 4 5
- A | 440 420 389 363 330 299 A 30 32 29 26 23 20
68 .68 .68 .69 .69 .70 .33 .33 .32 .30 .30 .30
- .64 +64 +«64 +69 66 «65S +19 .18 «17 17 .15 «12
. «37 «37 «36 «34 35 «30 =092 =92 =,93 -,94 -,94 -.95
. b) Correlations
lag 0 1 2 3 4 5 lag 0 1 2 3 4 5
A 2.66 2.53 2,33 2,15 1.93 1.72 A «34 .30 27 .25 o22 .19
60 «60 +«60 «61 «63 «63 237 ~.41 -,40 ~,39 -,38 ~,37
«60 «60 «60 «61 33 «64 *e37 ~33 =31 ~,30 =-,28 ~,.26
54 53 «52 +«50 «47 44 -85 +85 .86 87 .88 .89
AN ¢) Third eigenvalue
hY
~
iy
13 Covariances (eigenvalues x 103 Correlations
) lag | o0 1 2 3 4 5 lag| o0 1 2 3 4 5
ol A 0 2 2 3 1 0 A ,009 ,009 ,009 ,.004 .004 .004
}” 66 «66 «66 «66 +66 «67 .68 .68 .68 .68 .68 «69
<. =275 =75 =75 =75 <=.75 =.74 =73 =73 =73 =73 =73 =.72
fa 09 .09 .09 .08 .08 «06 +06 .06 .06 »05 .06 <04
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TABLE 16
a) Model A
[ ] [} £ x 10‘
1 . . 2.52 =3.80 .92 u
(.001) (.09) (.06) (.13) 13.12
. 1 . 2.68 ~3.96 .93 12.84 12.65
(.001) (10)  (.04) (.03) 12.39 12,20 12.94
. . t 2.56 ~3.44 55
b) Model B 8
'o16 . .
08 . 12.99
same ¢ = 1 (.05) ‘ 12.80 12,60
. 23 .36 12.42 12,22 13,05
(.09) (.07)
¢c) Model C 0
-23 .. .
:°‘ .22 . 12.99
6= (.04) x =221 | 12.69 12.47
. .21 11.26 12.05 12.86
) (.04)

a matrix similar to the § matrix of model B (see Table 16B) plus a matrix with the three
rows equal to (2.7 =3.8 .92). Calling this rank one matrix A, this implies

Aa

-
22

0

That means that a noise sequence can be expressed as a linear combination of the other
two.

An interesting fact is that the vector that defines this combination is,
approximately, proportional to the eigenvalue linked to the smallest eigenvalue in the
covariance and autocorrelation matrices. Thus, the same restriction affects to both the
noises and the vector of series. Calling m' this common vector we have

m'z, =0

-0 .

[
T2

Dl T T

~7
For these results to be in agreement with the model for the series, as }\:\
i
- - -‘. ..'
45 £
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n'Vst =n'(I - OB)nt
then
p'Qa, =0
which means that 6 must be equal to kI, where k is a scalar. The matrix § of model
B suggest that this can be a reasonable model. The maximum likelihood estimation with the
restriction that the matrix § be diagonal leads to model C. Note that the fit of the
model as measured by the diagonal elements of *u has not worsened, and the diagnostic
checks does not indicate any problems in the estimated residuals. The three diagonal
elements of § in model C are, approximately, equal and so, the final model for the series
ia:
VEt = (1 + .22!;)&t .
As the ¢ matrix is the identity it does not provide information about eigenvectors

in this case. However, we noticed that (a) the model for the common factors must be

Vyt =a because the eigenvalues of ¢, that are all equal to one, must match the
eigenvalues of the factors. (b) In this particular case the factors are undetermined
because any orthogonal transformation of y, will produce exactly the same model for the
factors, (c) we can choose the orthogonal transformation in order to result in orthogonal
columns in the vector P, (4) If we do that, the columns of P will be eigenvectors of
the covariance matrices.

Choosing this representation, we first notice that the two main eigenvectors of the

covariance matrices (Table 15) are orthogonal. Then taking these eigenvectors as

generators of the transformation the matrix ¥

.68 «64 «37
M= 32 .18 ~-.92
+.66 =.75 +.08
This produces three new aggregates x, - gyt. The first could represent the general
tendency of the stock market. The second could be interpreted as the beshavior of large

corporation versus the rest of the market. The third is the ratio of the industrial sector

versus the general market. This third component is approximately the linear combination of

-46-

"o

N -:-;".l-::'{
.. L

5 Y iy

_":.
.
)

|

-~
AN %Y

“»
n
P

-
-

-y
A

B
VXXX NY

—~ %
»

v

:




P A AP AP B b e e A b e Pei b S Pl e Fud it S i e e i &

the series that has a variance very closs to zero. These three components are shown in
Figure 4. The variance of the first is the largest eigenvalue of T, (.0440) the variance
of the second less than 7% of the first (.0030) and the third has a variance that is
0,0023% of the variance of the mean factor and could be considered nearly constant.
However, when we apply the transformation M to the matrices ¢ and §, since
¢=~1Iand @ = ~.221 thess parameter matrices 4o not change. Then, the vector x

t

follows the same model as £ , which means that the third component of x_ although

t
almost zero, is a nonstationary factor. This factor is displayed in Figure 5 in a very
augmented scale and in fact it is clear that it is nonstationary. It increases slowly but
steadily until 1974, numﬁinq that the stock prices of Industrial corporations were
gaining against the general market until 1974. Then, this tendency broke down and industry
began loosing steadily position against the general market. This component may indicate a
relative deterioration of U.S8. industry after the 74 oil crisis.

The conclusion from this example is that we need to carry out the complete analysis to
obtain a clear picture of the system. As we stressed in Section S, if the variance of one
factor is very small in relation to all the others, this factor may be overlooked in the
study of the rank of the covariance and partial autocorrelation matrices. However, it will

show up in the final multivariate ARIMA model and will be easily detected when applying the

transformation to recover the factors.
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7, COMPARISON WITH OTHER APPROACHES

Quenoulli (1957) suggested to use the eigenvectors and eigenvalues of ‘“, no(z) to
build transformations that allow simpler interpretation of the fitted model and/or to
identify the possible number of factors. We now revise briefly the properties of these
transformations.

Starting with the simplest case, the one factor model it has been shown that both
matrices have the representation

kin' + ie
and so (1) procedures based on either the rank or the eigenvalues of !’“ will be similar
to those based on these same properties of Eo(l)l (2) both matrices are full rank
matrices if Ee is not d;genorlte; (3) the eigenvectors of either ;“ or ];'(o) will

only coincide with those of PP' when Ee = ci;. It turns out then that in the one factor
case only when I c™ oiI and az is very small compared to yo(y) (see Bection 5)

principal components based on either Iz(O) or ;“ will obtain the same results as the

- method suggested in this paper.

}j_ In the multifactor situation, the eigenvectors of xo(s) and t“ needn't be the same

but the above considerations still apply. As {z(O) - .l:gy (O)g' + Ee principal components

-\ in the original data will depend on the measurement error matrix 5:' and the same is true
'._: for the matrix ‘n'
-‘\.

s Box and Tiao (1977) suggested the use of the eigenvectors of the matrix

-1 -

"~ g =1L, (0)L2(0) . (7.1)
'_;. where it is assumed that 3z, follows an autoregressive process =, )_ BeZeag * & and
?:\
« §

. [°(0) = 1L (%)

=y 1o9 Lz

s
".'; and they proved that a transformation based on the eigenvectors of Q produces a set of
A)
',': new canonical variables that are ordered from least to most predictable. To compare this

\ canonical transformation wih the one recommended in this paper let us assume first, that
"~ the model equation for the factors is AR(1) and second, that the model identified and
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fitted for the observed series is AR(1). Then the estimation of the autorsgresaive
parameter §_, will be
-1 -1
g. - 5;(1)}',' (0) = g;;mg'(ggy(o):' + E,c)
and using the expression for the first partial autoregression matrix obtained in (2.6), and
inserting it into (7.1),
g - oL o
if we now apply that
-1 -1

BEe (¢ + RL(WIR"IE, B = AL + Ly(y)y)
where

, b =Pkt
the general expression for Q is:

-1 -1
Q- (E‘ + g;omg') P¢ I (0)(] + nr__y(on gymgyg'
and using the well known expression for the inversion of the sum of two matrices one of

them being nonsingular,

-1 _ =1 -1 -1 -1
8= (B - ERG* LONTL (R E IR (O)(F + AL (01T AL (0)g B

and, after some manipulations and taking into account that
1-a+mme+m?

we finally obtain

8= BBG + Lo g L (01 + pL (07 aL (03gp’ (7.2)
Then, if ¥' 4is such that y°'R = Q, then

g -gry-g

and 80 the columns of ¥ are eigenvectora of Q 1linked to the zero eigenvalues of Q.
However, expression (7.2) shows that neither P nor CP when ¢ is an orthogonal matrix,
will be in general eigenvectors of Q and so the canonical transforamation will fail to

recuperate the factors. The reason is that the linear combinations of greater

predictability depends not only on the factors, but on the variance of the signal as well.
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1{ In the one factor model, equation (7.2) reduces to

~1
g = &2ty

= with

o

pid 2 2

> ay,(y)é

- A = —_—
. . Q

(1 + av (yn?

1

and a = g'g; P as before. Then E;‘g is the vector linked to the nonzero eigenvalue of

- that is a)_ . As approaches the unity, if ay_ (y) is much greater than one, A
y oY

Q Q

will approach unity too, in agreement with Box and Tiao (1977) theorem. 1In addition, the
eigenvalues linked to zero eigenvectors of { must be linear combinations of those of
:{' PP' and, calling y' the matrix whose rows are the eigenvectors of Q, Y'B = 0.
Therefore both procedures will come out with a different component plus k ~ 1 white
noise. In the canonical transformation this single component depends on P and on ;e

whereas the factor analysis decomposition depends only on P.
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8, CONCLUSION

£

It has been shown that the multivariate time series model for an observed vector of

L 4
L 2R

g*: time series may appear very complicated, when in fact a simple representation using a small E}
g;% set of common factor is adequate. Besides, failing to notice this structure can be s&:
§{: dangerous, because the interpretation of the internal dynamic that we have to draw from the ;?S
- model will be completely different in both cases. ;; .
'ZZ; Unlike in the factor analysis of static variables, the restrictions that the presence ;;;
i:é of common factors put on the covariance, correlation, partial autocorrelation and paramater Sﬁ
e matrices make the identification of the number of factors and the estimation of the factor -?i'
;u. loading matrix relatively easy.
:.: Box and Tiao (1977) and Tiao and Box (1981) recommend the computation of eigenvalues ;2;
i;; and eigenvectors of different matrices as a useful source of valuable information. It has 7%5
been shown the relationship between this eigenvalues and eigenvectors in the context of a
Eii common number of factors and how a transformation can be built to obtain a parsimonious and -
}‘ intelligible representation of the observed vector of time series. ff:
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